The Next Step in AI Transparency: Taking Standards from Generalities to Reality

Christopher S. Yoo John H. Chestnut Professor of Law, Communication, and Computer & Information Science

March 15, 2024

Introduction

- Proposals call for transparency without providing details (e.g., U.S. Executive Order, NIST Standards, U.S. AI Bill of Rights, OECD Recommendation, Bletchley Declaration, model cards)
- My talk will review three major elements of AI transparency
 - Algorithms
 - **Training data**
 - **Testing and validation**
- It will also discuss the necessity of ongoing review

Transparency Regarding Algorithms

- The opaqueness of bare algorithms (inputs, not outputs)
- Limits of bans on including protected classes as criteria
 - The possibility of proxies and omitted variable bias
 - The need to correct biases in training data
 - Foreclosure of focusing on equality of outcome
 - Negative impact on predictive powers of models
- Legal constraints: trade secrets, government privilege
- Compromise of business models

Transparency Regarding Training Data

- Source of the training data
- Quality of the training data (limits of adding more data)
 Potential bias
 - \square Scope (e.g., LLM hallucination, weather) and other Vs
 - **Rare** events and long-tail effects
 - □ Structural changes (e.g., collapse of LTCM, Zillow iBuying)
- Need to address legal constraints (e.g., de-duplication, personal information)

Transparency Regarding Testing/Validation

- Different approaches to testing
 - IEEE AV: design processes, formal methods, robustness analysis, simulation/closed course/public road testing
 - Limits of approaches (e.g., U.S. seatbelt testing)
- Difficulties in specifying outcomes (Goodhart's Law)
 - Limits to the solution space (e.g., Tetris pause, pancake flip)
 - □ Specification gaming/reward hacking (e.g., CycleGAN cheating)

The Need for Ongoing Evaluation

- Little guidance in current debate
- Learning nature of AI
- Reality that complex systems have emergent properties
 - Proxy discrimination
 - □ Adverse environments (e.g., Microsoft's Tay)
 - Multiagent interactions (e.g., flash crashes, Lambrecht & Tucker study, other black swan events)
 - Hallucinations

Conclusion

- Standards need to provide more details regarding ex ante transparency on algorithms, training data, and testing
- AI accountability also needs ex post assessment
- Closing thought: need to frame issues in terms of optimality
 Compliance is costly, e.g., HIPAA right to know data sharing
 Predictive analytics are probabilistic/must have permissible error rate

Thank you! Questions/Discussion?

